STYLING OF COMPUTER GRAPHICS HAIR THROUGH VOLUMETRIC FLOW DYNAMICS
Granted: March 17, 2016
Application Number:
20160078675
Methods are disclosed for the computer generation of data for images that include hair, fur, or other strand-like material. A volume for the hair is specified, having a plurality of surfaces. A fluid flow simulation is performed within the volume, with a first surface of the volume being a source area through which fluid is simulated to enter the volume, and a second surface being an exit surface through which fluid is simulated as exiting the volume. The fluid flow simulation may be…
VISUAL AND PHYSICAL MOTION SENSING FOR THREE-DIMENSIONAL MOTION CAPTURE
Granted: January 14, 2016
Application Number:
20160012598
A system includes a visual data collector for collecting visual information from an image of one or more features of an object. The system also includes a physical data collector for collecting sensor information provided by at one or more sensors attached to the object. The system also includes a computer system that includes a motion data combiner for combining the visual information the sensor information. The motion data combiner is configured to determine the position of a…
REAL-TIME CONTENT IMMERSION SYSTEM
Granted: December 3, 2015
Application Number:
20150350628
A method may include presenting a scene from linear content on one or more display devices in an immersive environment, and receiving, from a user within the immersive environment, input to change an aspect of the scene. The method may also include accessing 3-D virtual scene information previously used to render the scene, and changing the 3-D virtual scene information according to the changed aspect of the scene. The method may additionally include rending the 3-D virtual scene to…
IMMERSION PHOTOGRAPHY WITH DYNAMIC MATTE SCREEN
Granted: December 3, 2015
Application Number:
20150348326
A method may include displaying, on one or more display devices in a virtual-reality environment, a visual representation of a 3-D virtual scene from the perspective of a subject location in the virtual-reality environment. The method may also include displaying, on the one or more display devices, a chroma-key background with the visual representation. The method may further include recording, using a camera, an image of the subject in the virtual-reality environment against the…
DEEP IMAGE DATA COMPRESSION
Granted: November 5, 2015
Application Number:
20150317765
A method of compressing a deep image representation may include receiving a deep image, where the deep image may include multiple pixels, and where each pixel in the deep image may include multiple samples. The method may also include compressing the deep image by combining samples in each pixel that are associated with the same primitives. This process may be repeated on a pixel-by-pixel basis. Some embodiments may use primitive IDs to match pixels to primitives through the rendering…
MOTION-CONTROLLED BODY CAPTURE AND RECONSTRUCTION
Granted: October 15, 2015
Application Number:
20150294492
A method of generating unrecorded camera views may include receiving a plurality of 2-D video sequences of a subject in a real 3-D space, where each 2-D video sequence may depict the subject from a different perspective. The method may also include generating a 3-D representation of the subject in a virtual 3-D space, where a geometry and texture of the 3-D representation may be generated based on the 2D video sequences, and the motion of the 3-D representation in the virtual 3-D space…
CALIBRATION TARGET FOR VIDEO PROCESSING
Granted: October 8, 2015
Application Number:
20150288956
An apparatus is disclosed which may serve as a target for calibrating a camera. The apparatus comprises one or more planar surfaces. The apparatus includes at least one fiducial marking on a planar surface. The set of all planar markings on the apparatus are distinguishable.
AUTOMATED CAMERA CALIBRATION METHODS AND SYSTEMS
Granted: October 8, 2015
Application Number:
20150288951
Methods and systems are disclosed for calibrating a camera using a calibration target apparatus that contains at least one fiducial marking on a planar surface. The set of all planar markings on the apparatus are distinguishable. Parameters of the camera are inferred from at least one image of the calibration target apparatus. In some embodiments, pixel coordinates of identified fiducial markings in an image are used with geometric knowledge of the apparatus to calculate camera…
POST-RENDER MOTION BLUR
Granted: August 20, 2015
Application Number:
20150235407
A method of applying a post-render motion blur to an object may include receiving a first image of the object. The first image need not be motion blurred, and the first image may include a first pixel and rendered color information for the first pixel. The method may also include receiving a second image of the object. The second image may be motion blurred, and the second image may include a second pixel and a location of the second pixel before the second image was motion blurred.…
DYNAMIC LIGHTING CAPTURE AND RECONSTRUCTION
Granted: July 30, 2015
Application Number:
20150215623
Systems and techniques for dynamically capturing and reconstructing lighting are provided. The systems and techniques may be based on a stream of images capturing the lighting within an environment as a scene is shot. Reconstructed lighting data may be used to illuminate a character in a computer-generated environment as the scene is shot. For example, a method may include receiving a stream of images representing lighting of a physical environment. The method may further include…
CONTROLLING A VIRTUAL CAMERA
Granted: May 14, 2015
Application Number:
20150130801
Among other aspects, on computer-implemented method includes: receiving at least one command in a computer system from a handheld device; positioning a virtual camera and controlling a virtual scene according to the command; and in response to the command, generating an output to the handheld device for displaying a view of the virtual scene as controlled on a display of the handheld device, the view captured by the virtual camera as positioned.
POST-RENDER MOTION BLUR
Granted: March 26, 2015
Application Number:
20150084991
A method of applying a post-render motion blur to an object may include receiving a first image of the object. The first image need not be motion blurred, and the first image may include a first pixel and rendered color information for the first pixel. The method may also include receiving a second image of the object. The second image may be motion blurred, and the second image may include a second pixel and a location of the second pixel before the second image was motion blurred. The…
REAL-TIME PERFORMANCE CAPTURE WITH ON-THE-FLY CORRECTIVES
Granted: March 26, 2015
Application Number:
20150084950
Techniques for facial performance capture using an adaptive model are provided herein. For example, a computer-implemented method may include obtaining a three-dimensional scan of a subject and a generating customized digital model including a set of blendshapes using the three-dimensional scan, each of one or more blendshapes of the set of blendshapes representing at least a portion of a characteristic of the subject. The method may further include receiving input data of the subject,…
THREE-DIMENSIONAL MOTION CAPTURE
Granted: March 19, 2015
Application Number:
20150077418
In one general aspect, a method is described. The method includes generating a positional relationship between one or more support structures having at least one motion capture mark and at least one virtual structure corresponding to geometry of an object to be tracked and positioning the support structures on the object to be tracked. The support structures has sufficient rigidity that, if there are multiple marks, the marks on each support structure maintain substantially fixed…
DYNAMIC LIGHTING
Granted: March 5, 2015
Application Number:
20150062863
A movie set can include light sources each producing a light corresponding to a light channel, at least one high-frame rate camera, and a controller connected to the light sources and camera to synchronize the camera and light sources. The number of light channels can be proportional to the frame rate. For example, if the filming frame rate is 120 frames per second (fps) and the playback frame rate is 24 fps, then 5 light channels can be used. In this example, for every one playback…
FLEXIBLE 3-D CHARACTER RIGGING DEVELOPMENT ARCHITECTURE
Granted: January 22, 2015
Application Number:
20150022517
A method of generating an animation rig for a three-dimensional (3-D) computing environment may include providing a rig generation environment that includes a library storing a plurality of blocks. Each of the plurality of blocks may represent particular rig elements and include information for generating the rig elements in the 3-D computing environment along with a first icon that is visually representative of the particular rig elements. The method may also include receiving and…
VISUAL TRACKING FRAMEWORK
Granted: August 7, 2014
Application Number:
20140219499
A computer program product tangibly embodied in a computer-readable storage medium includes instructions that when executed by a processor perform a method. The method includes identifying a frame of a video sequence, transforming a model into an initial guess for how the region appears in the frame, performing an exhaustive search of the frame, performing a plurality of optimization procedures, wherein at least one additional model parameter is taken into account as each subsequent…
CONTROLLING ANIMATED CHARACTER EXPRESSION
Granted: July 10, 2014
Application Number:
20140192059
A system includes a computer system capable of representing one or more animated characters. The computer system includes a blendshape manager that combines multiple blendshapes to produce the animated character. The computer system also includes an expression manager to respectively adjust one or more control parameters associated with each of the plurality of blendshapes for adjusting an expression of the animated character. The computer system also includes a corrective element…
CONTROLLING ROBOTIC MOTION OF CAMERA
Granted: June 19, 2014
Application Number:
20140168455
Among other disclosed subject matter, a system includes a first camera generating a live image of a scene, the first camera configured for being placed in a plurality of locations by robotic motion. The system includes a handheld device that includes a display device for continuously presenting the live image, wherein movement of the handheld device causes the handheld device to generate an output that controls the robotic motion.
GEOMETRY TRACKING
Granted: May 29, 2014
Application Number:
20140147014
A method of motion capture may include accessing a 3D model of a subject, and associating the 3D model of the subject with a 2D representation of the subject in a plurality of frames. The method may also include identifying a change to the 2D representation of the subject between two or more of the plurality of frames, and deforming the 3D model in a virtual 3D space. In some embodiments, the deforming may be based on the identified change to the 2D representation and at least one…