Tessera Technologies Patent Applications

Microelectronic assemblies having compliancy and methods therefor

Granted: June 26, 2008
Application Number: 20080150121
A method of making a microelectronic assembly includes providing a semiconductor wafer having contacts accessible at a first surface, forming compliant bumps over the first surface and depositing a sacrificial layer over the compliant bumps. The method includes grinding the sacrificial layer and the compliant bumps so as to planarize top surfaces of the compliant bumps, whereby the planarized top surfaces are accessible through said sacrificial layer. The sacrificial layer is removed to…

Wafer-level fabrication of lidded chips with electrodeposited dielectric coating

Granted: May 1, 2008
Application Number: 20080099900
A method is provided for fabricating a unit including a semiconductor element such as a sensor unit, e.g., for optical imaging. A semiconductor element has plurality of conductive features exposed at the front surface and semiconductive or conductive material exposed at least one of the front and rear surfaces. At least some of the conductive features are insulated from the exposed semiconductive or conductive material. By electrodeposition, an insulative layer is formed to overlie the…

Wafer-level fabrication of lidded chips with electrodeposited dielectric coating

Granted: May 1, 2008
Application Number: 20080099907
A method is provided for fabricating a unit including a semiconductor element such as a sensor unit, e.g., for optical imaging. A semiconductor element has plurality of conductive features exposed at the front surface and semiconductive or conductive material exposed at at least one of the front and rear surfaces. At least some of the conductive features are insulated from the exposed semiconductive or conductive material. By electrodeposition, an insulative layer is formed to overlie…

Methods and apparatus for packaging integrated circuit devices

Granted: January 24, 2008
Application Number: 20080017879
An integrally packaged integrated circuit device including an integrated circuit die including a crystalline substrate having first and second generally planar surfaces and edge surfaces and semiconductor circuitry formed over the first generally planar surface, at least one chip scale packaging layer formed over the semiconductor circuitry and the first generally planar surface, an insulation layer formed over the second generally planar surface and the edge surfaces and at least one…

Methods and apparatus for packaging integrated circuit devices

Granted: January 17, 2008
Application Number: 20080012115
An integrally packaged integrated circuit device including an integrated circuit die including a crystalline substrate having first and second generally planar surfaces and edge surfaces and an active surface formed on the first generally planar surface, at least one chip scale packaging layer formed over the active surface and at least one electrical contact formed over the at least one chip scale packaging layer, the at least one electrical contact being connected to circuitry on the…

Wafer level chip packaging

Granted: August 16, 2007
Application Number: 20070190691
Packaged microelectronic elements are provided. In an exemplary embodiment, a microelectronic element having a front face and a plurality of peripheral edges bounding the front face has a device region at the front face and a contact region with a plurality of exposed contacts adjacent to at least one of the peripheral edges. The packaged element may include a plurality of support walls overlying the front face of the microelectronic element such that a lid can be mounted to the support…

Wafer level packaging to lidded chips

Granted: August 16, 2007
Application Number: 20070190747
Methods are provided for making a plurality of lidded microelectronic elements. In an exemplary embodiment, a lid wafer is assembled with a device wafer. Desirably, the lid wafer is severed into a plurality of lid elements to remove portions of the lid wafer overlying contacts at a front face of the device wafer adjacent to dicing lanes of the device wafer. Thereafter, desirably, the device wafer is severed along the dicing lanes to provide a plurality of lidded microelectronic elements.

Methods and apparatus for packaging integrated circuit devices

Granted: June 21, 2007
Application Number: 20070138498
An integrally packaged integrated circuit device including an integrated circuit die including a crystalline substrate having first and second generally planar surfaces and edge surfaces and semiconductor circuitry formed over the first generally planar surface, at least one chip scale packaging layer formed over the semiconductor circuitry and the first generally planar surface, an insulation layer formed over the second generally planar surface and the edge surfaces and at least one…

Integrated circuit device

Granted: February 22, 2007
Application Number: 20070040180
An integrally packaged optronic integrated circuit device including an integrated circuit die containing at least one of a radiation emitter and radiation receiver and having a transparent packaging layer overlying a surface of the die, the transparent packaging layer having an opaque coating adjacent to edges of the layer.

Chip packages with covers

Granted: February 22, 2007
Application Number: 20070040257
This invention discloses a crystalline substrate based device including a crystalline substrate having formed thereon a microstructure; and at least one packaging layer which is sealed over the microstructure by means of an adhesive and defines therewith at least one gap between the crystalline substrate and the at least one packaging layer. A method of producing a crystalline substrate based device is also disclosed.

Integrated circuit device

Granted: February 22, 2007
Application Number: 20070042562
An integrally packaged optronic integrated circuit device (310) including an integrated circuit die (322) containing at least one of a radiation emitter and radiation receiver and having top and bottom surfaces formed of electrically insulative and mechanically protective material, at least one of the surfaces (317) being transparent to radiation, and electrically insulative edge surfaces (314) having pads.