INTEGRATED AUDIO AMPLIFICATION CIRCUIT WITH MULTI-FUNCTIONAL EXTERNAL TERMINALS
Granted: September 11, 2014
Application Number:
20140254837
An audio amplification circuit may include an input terminal for receipt of an input signal from a transducer. A signal processor may be coupled to the input terminal for receipt and processing of the input signal to generate a processed digital audio signal in accordance with a programmable configuration setting of the signal processor. A serial data transmission interface is configured for receipt of the processed digital audio signal and supply of a corresponding digital audio stream…
Distributed Automatic Level Control for a Microphone Array
Granted: September 11, 2014
Application Number:
20140254823
A distributed automatic level control function is provided, in which information relating to a common automatic level control parameter is transmitted to each of a plurality of microphone devices, wherein the information transmitted to at least one microphone device is derived from an audio sample of at least one different microphone device. Each microphone device produces the common automatic level control parameter based on the information received by the microphone device and applies…
Systems and Methods for Activity Recognition Training
Granted: August 28, 2014
Application Number:
20140244209
Systems and methods are disclosed for classifying an activity. A sensor tracks motion by a user and a classifier recognizes data output sensor as corresponding to an activity. The classifier may be trained or otherwise modified using received information, which may include data from the sensor or information from an external source, such as a remotely maintained database. The device may update a local or remote database using sensor data when in a training mode. The training mode may be…
METHOD FOR MEMS STRUCTURE WITH DUAL-LEVEL STRUCTURAL LAYER AND ACOUSTIC PORT
Granted: August 28, 2014
Application Number:
20140239353
A method for fabricating a MEMS device includes depositing and patterning a first sacrificial layer onto a silicon substrate, the first sacrificial layer being partially removed leaving a first remaining oxide. Further, the method includes depositing a conductive structure layer onto the silicon substrate, the conductive structure layer making physical contact with at least a portion of the silicon substrate. Further, a second sacrificial layer is formed on top of the conductive…
Packaged Microphone with Frame Having Die Mounting Concavity
Granted: August 21, 2014
Application Number:
20140233782
A packaged microphone has a lid structure with an inner surface having a concavity, and a microphone die secured within the concavity. The packaged microphone also has a substrate coupled with the lid structure to form a package having an interior volume containing the microphone die. The substrate is electrically connected with the microphone die. In addition, the packaged microphone also has aperture formed through the package, and a seal proximate to the microphone die. The seal…
INTERNAL ELECTRICAL CONTACT FOR ENCLOSED MEMS DEVICES
Granted: July 31, 2014
Application Number:
20140213007
A method of fabricating electrical connections in an integrated MEMS device is disclosed. The method comprises forming a MEMS wafer. Forming a MEMS wafer includes forming one cavity in a first semiconductor layer, bonding the first semiconductor layer to a second semiconductor layer with a dielectric layer disposed between the first semiconductor layer and the second semiconductor layer, and etching at least one via through the second semiconductor layer and the dielectric layer and…
Noise Mitigating Microphone System
Granted: July 31, 2014
Application Number:
20140211957
A microphone system has a package with a top, a bottom, and four sides that at least in part form an interior chamber. One of the sides forms an inlet aperture for communicating the inlet chamber with the exterior environment. The system also has first and second microphone dies, in a stacked relationship, respectively having a first and second diaphragms. A circuit die, positioned in electrical communication with the first and second microphone dies, is configured to mitigate…
LOW-COST PACKAGE FOR INTEGRATED MEMS SENSORS
Granted: July 31, 2014
Application Number:
20140210019
An integrated MEMS sensor package is disclosed. The package comprises a sensor chip with a top surface and a bottom surface. The top surface comprises an opening. The bottom surface is attached to a substrate with electrical inter-connects. A lid is coupled to the top surface with an adhesive material. The lid may have an opening to expose the sensor chip to ambient environment.
Microphone System with Non-Orthogonally Mounted Microphone Die
Granted: July 24, 2014
Application Number:
20140205127
A microphone system has a lid coupled with a base to form a package with an interior chamber. The package has a top, a bottom, and a plurality of sides, and at least one of those sides has a portion with a substantially planar surface forming an opening for receiving an acoustic signal. The microphone system also has a microphone die positioned within the interior chamber. The microphone is positioned at a non-orthogonal, non-zero angle with regard to the opening in the at least one…
IN-PLANE SENSING LORENTZ FORCE MAGNETOMETER
Granted: July 3, 2014
Application Number:
20140184213
A magnetic field sensor includes a driving element through which an electric current circumnavigates the driving element. A Lorentz force acts on the driving element resulting in a torque about a first axis in response to a magnetic field along a second axis substantially parallel to a plane of a substrate. The driving element is coiled-shaped. A sensing element of the magnetic field sensor is configured to rotate about the first axis substantially parallel to the plane of the substrate…
Integrated Microphone Package
Granted: June 19, 2014
Application Number:
20140169607
An apparatus has a packaged microphone with a base and a lid that at least in part form an interior chamber containing a microphone die. The base has a bottom surface with an electrical interface and a base aperture. The apparatus also has a device housing having an internal surface, and a filter extending between the internal surface of the device housing, through an underlying substrate, and the bottom surface of the base.
MODE-TUNING SENSE INTERFACE
Granted: June 19, 2014
Application Number:
20140167789
A MEMS capacitive sensing interface includes a sense capacitor having a first terminal and a second terminal, and having associated therewith a first electrostatic force. Further included in the MEMS capacitive sensing interface is a feedback capacitor having a third terminal and a fourth terminal, the feedback capacitor having associated therewith a second electrostatic force. The second and the fourth terminals are coupled to a common mass, and a net electrostatic force includes the…
INTEGRATED HEATER ON MEMS CAP FOR WAFER SCALE PACKAGED MEMS SENSORS
Granted: June 5, 2014
Application Number:
20140151869
A system and method for controlling temperature of a MEMS sensor are disclosed. In a first aspect, the system comprises a MEMS cap encapsulating the MEMS sensor and a CMOS die vertically arranged to the MEMS cap. The system includes a heater integrated into the MEMS cap. The integrated heater is activated to control the temperature of the MEMS sensor. In a second aspect, the method comprises encapsulating the MEMS sensor with a MEMS cap and coupling a CMOS die to the MEMS cap. The method…
MEMS DEVICE AND PROCESS FOR RF AND LOW RESISTANCE APPLICATIONS
Granted: May 29, 2014
Application Number:
20140145244
MEMS device for low resistance applications are disclosed. In a first aspect, the MEMS device comprises a MEMS wafer including a handle wafer with one or more cavities containing a first surface and a second surface and an insulating layer deposited on the second surface of the handle wafer. The MEMS device also includes a device layer having a third and fourth surface, the third surface bonded to the insulating layer of the second surface of handle wafer; and a metal conductive layer on…
Microphone System with Mechanically-Coupled Diaphragms
Granted: May 15, 2014
Application Number:
20140133685
A microphone system has two diaphragms and are mechanically interconnected such that they respond in antiphase to an acoustic signal impinging on one of the diaphragms. The two diaphragms produce two variable capacitances that vary proportionately but inversely to one another. Voltage signals produced by the two variable capacitances are summed to provide an output signal proportional to the acoustic signal, but with greater sensitivity than a single-diaphragm microphone.
METHOD OF FABRICATION OF AI/GE BONDING IN A WAFER PACKAGING ENVIRONMENT AND A PRODUCT PRODUCED THEREFROM
Granted: May 15, 2014
Application Number:
20140131820
A method of bonding of germanium to aluminum between two substrates to create a robust electrical and mechanical contact is disclosed. An aluminum-germanium bond has the following unique combination of attributes: (1) it can form a hermetic seal; (2) it can be used to create an electrically conductive path between two substrates; (3) it can be patterned so that this conduction path is localized; (4) the bond can be made with the aluminum that is available as standard foundry CMOS…
CANCELLATION OF DYNAMIC OFFSET IN MOS RESISTORS
Granted: May 1, 2014
Application Number:
20140118073
A circuit utilizes a MOS device in a triode mode of operation and includes a biasing circuit and a MOS device. The MOS device has a drain, a source, and a gate terminal, and is coupled to the biasing circuit. The source terminal, drain terminal, and gate terminal each has a potential and the drain and the source terminals have a resistance. The biasing circuit couples the drain and source terminals of the MOS device to the gate terminal of the MOS device. The biasing circuit couples a DC…
CURVATURE-CORRECTED BANDGAP REFERENCE
Granted: May 1, 2014
Application Number:
20140117966
A curvature-corrected bandgap reference is disclosed. The curvature-corrected bandgap reference comprises a Brokaw bandgap circuit. The Brokaw bandgap circuit includes an output node providing a reference voltage. The Brokaw bandgap circuit further comprising a first BJT device including a first base terminal coupled to the output node and a first emitter terminal. The first BJT device operates at a first current density that is substantially proportional to absolute temperature. The…
MEMS Microphone System for Harsh Environments
Granted: April 3, 2014
Application Number:
20140091406
A MEMS microphone system suited for harsh environments. The system uses an integrated circuit package. A first, solid metal lid covers one face of a ceramic package base that includes a cavity, forming an acoustic chamber. The base includes an aperture through the opposing face of the base for receiving audio signals into the chamber. A MEMS microphone is attached within the chamber about the aperture. A filter covers the aperture opening in the opposing face of the base to prevent…
SWITCHABLE ATTENUATION CIRCUIT FOR MEMS MICROPHONE SY
Granted: April 3, 2014
Application Number:
20140093102
A switch control circuit monitors a signal produced by a MEMS or other capacitor microphone. When a criterion is met, for example when the amplitude of the monitored signal exceeds a threshold or the monitored signal has been clipped or analysis of the monitored signal indicates clipping is imminent or likely, the switch control circuit operates one or more switches so as to selectively connect one or more capacitors to a signal line from the microphone, i.e., so as to connect a selected…