Systems and methods for reworking shingled solar cell modules
Granted: June 2, 2020
Patent Number:
10673379
A high efficiency configuration for a solar cell module comprises solar cells arranged in a shingled manner to form super cells, which may be arranged to efficiently use the area of the solar module, reduce series resistance, and increase module efficiency. Removing a defective solar cell from a super cell may be difficult, however. It may therefore be advantageous to bypass defective solar cells in a super cell rather than remove and replace them. A bypass conductor may be applied to…
Backfeed power supply for solar power system
Granted: May 26, 2020
Patent Number:
10666057
A solar collection system may collect energy from the sun to generate electricity for distribution on an electrical grid. In addition to generating electricity, a solar collection system may include support devices such as motors, controllers, sensors, and other support devices to perform various tasks to allow the solar collection system to more effectively generate electricity. When the solar collection system is generating sufficient power, the support devices may be powered by the…
In-cell bypass diode
Granted: May 26, 2020
Patent Number:
10665739
A solar cell can include a built-in bypass diode. In one embodiment, the solar cell can include an active region disposed in or above a first portion of a substrate and a bypass diode disposed in or above a second portion of the substrate. The first and second portions of the substrate can be physically separated with a groove. A metallization structure can couple the active region to the bypass diode.
Solar cells with improved lifetime, passivation and/or efficiency
Granted: May 19, 2020
Patent Number:
10658525
A method of fabricating a solar cell can include forming a dielectric region on a silicon substrate. The method can also include forming an emitter region over the dielectric region and forming a dopant region on a surface of the silicon substrate. In an embodiment, the method can include heating the silicon substrate at a temperature above 900 degrees Celsius to getter impurities to the emitter region and drive dopants from the dopant region to a portion of the silicon substrate.
Metallization of conductive wires for solar cells
Granted: May 5, 2020
Patent Number:
10644170
Methods of fabricating a solar cell, and system for electrically coupling solar cells, are described. In an example, the methods for fabricating a solar cell can include placing conductive wires in a wire guide, where conductive wires are placed over a first semiconductor substrate having first doped regions and second doped regions. The method can include aligning the conductive wires over the first and second doped regions, where the wire guide aligns the conductive wires substantially…
Solar module interconnect
Granted: April 28, 2020
Patent Number:
10636924
A solar module can include a first and second solar cell having front sides which face the sun during normal operation and back sides opposite the front sides. In an embodiment, a first interconnect can be coupled to the back sides of both the first and second solar cell, where the first interconnect comprises an anodized region facing substantially the same direction as the front sides.
Photovoltaic module clip
Granted: April 21, 2020
Patent Number:
10630232
A photovoltaic (PV) module clip, and methods of fastening a PV module to a structural member using the PV module clip, are described. In an example, a PV module clip includes a toe portion interconnected with several legs by a neck portion. The toe portion may be inserted through several aligned holes of a PV module frame and a mounting assembly strut to an underside of the strut. The neck portion may extend upward from the toe portion through the aligned holes to the legs above the…
Method of fabricating an emitter region of a solar cell
Granted: April 21, 2020
Patent Number:
10629760
Methods of fabricating emitter regions of solar cells are described. Methods of forming layers on substrates of solar cells, and the resulting solar cells, are also described.
Solar cells with differentiated P-type and N-type region architectures
Granted: April 21, 2020
Patent Number:
10629758
Methods of fabricating solar cell emitter regions with differentiated P-type and N-type regions architectures, and resulting solar cells, are described. In an example, a solar cell can include a substrate having a light-receiving surface and a back surface. A first doped region of a first conductivity type, wherein the first doped region is disposed in a first portion of the back surface. A first thin dielectric layer disposed over the back surface of the substrate, where a portion of…
Bonds for solar cell metallization
Granted: April 14, 2020
Patent Number:
10622505
A solar cell can include a substrate and a semiconductor region disposed in or above the substrate. The solar cell can also include a conductive contact disposed on the semiconductor region with the conductive contact including a conductive foil bonded to the semiconductor region.
Multi-axis flattening tool and method
Granted: April 14, 2020
Patent Number:
10622227
A multi-axis flattening tool and method are described. In an example, the multi-axis flattening tool includes a support structure to constrain a bowed wafer along a support perimeter, and a pair of flattening structures independently movable relative to the support structure. For example, a first flattening structure may grip the wafer within the support perimeter and move axially relative to the support structure to bend the wafer about a first plane, and a second flattening structure…
Foil-based metallization of solar cells
Granted: April 7, 2020
Patent Number:
10615296
Approaches for the foil-based metallization of solar cells and the resulting solar cells are described. In an example, a solar cell includes a substrate. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the substrate. A conductive contact structure is disposed above the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal seed material regions providing a metal seed…
Solar cell having a plurality of sub-cells coupled by a metallization structure
Granted: March 31, 2020
Patent Number:
10608133
Solar cells having a plurality of sub-cells coupled by metallization structures, and singulation approaches to forming solar cells having a plurality of sub-cells coupled by metallization structures, are described. In an example, a solar cell, includes a plurality of sub-cells, each of the sub-cells having a singulated and physically separated semiconductor substrate portion. Adjacent ones of the singulated and physically separated semiconductor substrate portions have a groove there…
Laser process and corresponding structures for forming contact holes of solar cells
Granted: March 31, 2020
Patent Number:
10608126
Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.
Solar cells with tunnel dielectrics
Granted: March 24, 2020
Patent Number:
10600922
A solar cell can have a first dielectric formed over a first doped region of a silicon substrate. The solar cell can have a second dielectric formed over a second doped region of the silicon substrate, where the first dielectric is a different type of dielectric than the second dielectric. A doped semiconductor can be formed over the first and second dielectric. A positive-type metal and a negative-type metal can be formed over the doped semiconductor.
Textured solar panel
Granted: March 24, 2020
Patent Number:
D879031
Automated solar collector installation design including version management
Granted: March 17, 2020
Patent Number:
10592834
Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined “features” with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described…
Photovoltaic thermal hybrid solar collector
Granted: March 17, 2020
Patent Number:
10594255
A laminated photovoltaic thermal (PV/T) module for a PV/T hybrid solar collector comprising a cooler/absorber and a photovoltaic unit. The cooler/absorber includes at least one flat surface with raised peripheral edges and is adapted to function as a mould for a photovoltaic laminate structure. The photovoltaic unit includes a photovoltaic laminate structure including: a first layer of a first laminate material moulded on the flat surface of the cooler/absorber, wherein the first…
Variable profile solar-tracking photovoltaic system
Granted: March 17, 2020
Patent Number:
10594252
Described herein are improved solar tracker systems having variable profiles and related operating methods thereof. Solar-tracking PV systems with variable twisted or aerodynamic profiles offer several advantages including improved wind stability, improved shading characteristics and/or capability to correct system component misalignment. In an embodiment, motor drives (and locking devices if present) of a PV system can be driven against each other to cause a desirable twisted or…
Roll-to-roll metallization of solar cells
Granted: March 17, 2020
Patent Number:
10593825
Disclosed herein are approaches to fabricating solar cells, solar cell strings and solar modules using roll-to-roll foil-based metallization approaches. Methods disclosed herein can comprise the steps of providing at least one solar cell wafer on a first roll unit and conveying a metal foil to the first roll unit. The metal foil can be coupled to the solar cell wafer on the first roll unit to produce a unified pairing of the metal foil and the solar cell wafer. We disclose solar energy…